ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdisj Unicode version

Theorem fzdisj 8916
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )

Proof of Theorem fzdisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3126 . . . 4  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  <->  ( x  e.  ( J ... K
)  /\  x  e.  ( M ... N ) ) )
2 elfzel1 8889 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  M  e.  ZZ )
32adantl 262 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  ZZ )
43zred 8360 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  RR )
5 elfzelz 8890 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
65zred 8360 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
76adantl 262 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
8 elfzel2 8888 . . . . . . . 8  |-  ( x  e.  ( J ... K )  ->  K  e.  ZZ )
98adantr 261 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  ZZ )
109zred 8360 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  RR )
11 elfzle1 8891 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  M  <_  x )
1211adantl 262 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  x )
13 elfzle2 8892 . . . . . . 7  |-  ( x  e.  ( J ... K )  ->  x  <_  K )
1413adantr 261 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  <_  K )
154, 7, 10, 12, 14letrd 7138 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  K )
164, 10lenltd 7134 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  -> 
( M  <_  K  <->  -.  K  <  M ) )
1715, 16mpbid 135 . . . 4  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  -.  K  <  M )
181, 17sylbi 114 . . 3  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  ->  -.  K  <  M )
1918con2i 557 . 2  |-  ( K  <  M  ->  -.  x  e.  ( ( J ... K )  i^i  ( M ... N
) ) )
2019eq0rdv 3261 1  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    i^i cin 2916   (/)c0 3224   class class class wbr 3764  (class class class)co 5512   RRcr 6888    < clt 7060    <_ cle 7061   ZZcz 8245   ...cfz 8874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltwlin 6997
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-neg 7185  df-z 8246  df-uz 8474  df-fz 8875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator