Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvss Unicode version

Theorem fvss 5189
 Description: The value of a function is a subset of if every element that could be a candidate for the value is a subset of . (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvss
Distinct variable groups:   ,   ,   ,

Proof of Theorem fvss
StepHypRef Expression
1 df-fv 4910 . 2
2 iotass 4884 . 2
31, 2syl5eqss 2989 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241   wss 2917   class class class wbr 3764  cio 4865  cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867  df-fv 4910 This theorem is referenced by:  fvssunirng  5190  relfvssunirn  5191  sefvex  5196  fvmptss2  5247  tfrexlem  5948
 Copyright terms: Public domain W3C validator