ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf Structured version   Unicode version

Theorem funiunfvdmf 5328
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5327 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1  F/_ F
Assertion
Ref Expression
funiunfvdmf  F  Fn  U_  F `  U. F "
Distinct variable group:   ,
Allowed substitution hint:    F()

Proof of Theorem funiunfvdmf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4  F/_ F
2 nfcv 2160 . . . 4  F/_
31, 2nffv 5110 . . 3  F/_ F `
4 nfcv 2160 . . 3  F/_ F `
5 fveq2 5103 . . 3  F `  F `
63, 4, 5cbviun 3668 . 2  U_  F `  U_  F `
7 funiunfvdm 5327 . 2  F  Fn  U_  F `  U. F "
86, 7syl5eqr 2068 1  F  Fn  U_  F `  U. F "
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1228   F/_wnfc 2147   U.cuni 3554   U_ciun 3631   "cima 4275    Fn wfn 4824   ` cfv 4829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3849  ax-pow 3901  ax-pr 3918
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-eu 1885  df-mo 1886  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-sbc 2742  df-un 2899  df-in 2901  df-ss 2908  df-pw 3336  df-sn 3356  df-pr 3357  df-op 3359  df-uni 3555  df-iun 3633  df-br 3739  df-opab 3793  df-mpt 3794  df-id 4004  df-xp 4278  df-rel 4279  df-cnv 4280  df-co 4281  df-dm 4282  df-rn 4283  df-res 4284  df-ima 4285  df-iota 4794  df-fun 4831  df-fn 4832  df-fv 4837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator