ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcoeqres Unicode version

Theorem funcoeqres 5157
Description: Re-express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 5151 . . . 4  |-  ( Fun 
G  ->  ( G  o.  `' G )  =  (  _I  |`  ran  G ) )
21coeq2d 4498 . . 3  |-  ( Fun 
G  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  ran  G ) ) )
3 coass 4839 . . . 4  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
43eqcomi 2044 . . 3  |-  ( F  o.  ( G  o.  `' G ) )  =  ( ( F  o.  G )  o.  `' G )
5 coires1 4838 . . 3  |-  ( F  o.  (  _I  |`  ran  G
) )  =  ( F  |`  ran  G )
62, 4, 53eqtr3g 2095 . 2  |-  ( Fun 
G  ->  ( ( F  o.  G )  o.  `' G )  =  ( F  |`  ran  G ) )
7 coeq1 4493 . 2  |-  ( ( F  o.  G )  =  H  ->  (
( F  o.  G
)  o.  `' G
)  =  ( H  o.  `' G ) )
86, 7sylan9req 2093 1  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    _I cid 4025   `'ccnv 4344   ran crn 4346    |` cres 4347    o. ccom 4349   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-fun 4904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator