ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvcnv Unicode version

Theorem funcnvcnv 4958
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv  |-  ( Fun 
A  ->  Fun  `' `' A )

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 4775 . 2  |-  `' `' A  C_  A
2 funss 4920 . 2  |-  ( `' `' A  C_  A  -> 
( Fun  A  ->  Fun  `' `' A ) )
31, 2ax-mp 7 1  |-  ( Fun 
A  ->  Fun  `' `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 2917   `'ccnv 4344   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  funcnvres2  4974  inpreima  5293  difpreima  5294  f1oresrab  5329
  Copyright terms: Public domain W3C validator