ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd Unicode version

Theorem fssd 4998
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f  F : -->
fssd.b  C_  C
Assertion
Ref Expression
fssd  F : --> C

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2  F : -->
2 fssd.b . 2  C_  C
3 fss 4997 . 2  F : -->  C_  C 
F : --> C
41, 2, 3syl2anc 391 1  F : --> C
Colors of variables: wff set class
Syntax hints:   wi 4    C_ wss 2911   -->wf 4841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925  df-f 4849
This theorem is referenced by:  fseq1p1m1  8726
  Copyright terms: Public domain W3C validator