Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq1 Unicode version

Theorem freq1 4081
 Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1

Proof of Theorem freq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 frforeq1 4080 . . 3 FrFor FrFor
21albidv 1705 . 2 FrFor FrFor
3 df-frind 4069 . 2 FrFor
4 df-frind 4069 . 2 FrFor
52, 3, 43bitr4g 212 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241   wceq 1243  FrFor wfrfor 4064   wfr 4065 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-cleq 2033  df-clel 2036  df-ral 2311  df-br 3765  df-frfor 4068  df-frind 4069 This theorem is referenced by:  weeq1  4093
 Copyright terms: Public domain W3C validator