ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgcl Unicode version

Theorem frecuzrdgcl 9199
Description: Closure law for the recursive definition generator on upper integers. See comment in frec2uz0d 9185 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 31-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfn.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgcl  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  B )  e.  S
)
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgcl
StepHypRef Expression
1 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
21adantr 261 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
3 frec2uz.2 . . . . 5  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
4 uzrdg.s . . . . . 6  |-  ( ph  ->  S  e.  V )
54adantr 261 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  S  e.  V )
6 uzrdg.a . . . . . 6  |-  ( ph  ->  A  e.  S )
76adantr 261 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
8 uzrdg.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
98adantlr 446 . . . . 5  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
10 uzrdg.2 . . . . 5  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
11 simpr 103 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  B  e.  ( ZZ>= `  C )
)
122, 3, 5, 7, 9, 10, 11frecuzrdglem 9197 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  ran  R )
13 frecuzrdgfn.3 . . . . 5  |-  ( ph  ->  T  =  ran  R
)
1413adantr 261 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  T  =  ran  R )
1512, 14eleqtrrd 2117 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T
)
161, 3, 4, 6, 8, 10, 13frecuzrdgfn 9198 . . . . 5  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
17 fnfun 4996 . . . . 5  |-  ( T  Fn  ( ZZ>= `  C
)  ->  Fun  T )
18 funopfv 5213 . . . . 5  |-  ( Fun 
T  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
1916, 17, 183syl 17 . . . 4  |-  ( ph  ->  ( <. B ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>.  e.  T  ->  ( T `  B )  =  ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
2019adantr 261 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
2115, 20mpd 13 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  B )  =  ( 2nd `  ( R `
 ( `' G `  B ) ) ) )
221, 3frec2uzf1od 9192 . . . . 5  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
23 f1ocnvdm 5421 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
2422, 23sylan 267 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  B )  e.  om )
251, 3, 4, 6, 8, 10frecuzrdgrrn 9194 . . . 4  |-  ( (
ph  /\  ( `' G `  B )  e.  om )  ->  ( R `  ( `' G `  B )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
2624, 25syldan 266 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
27 xp2nd 5793 . . 3  |-  ( ( R `  ( `' G `  B ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
2826, 27syl 14 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
2921, 28eqeltrd 2114 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  B )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   <.cop 3378    |-> cmpt 3818   omcom 4313    X. cxp 4343   `'ccnv 4344   ran crn 4346   Fun wfun 4896    Fn wfn 4897   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   2ndc2nd 5766  freccfrec 5977   1c1 6890    + caddc 6892   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  iseqcl  9223
  Copyright terms: Public domain W3C validator