Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foeq123d | Unicode version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | |
f1eq123d.2 | |
f1eq123d.3 |
Ref | Expression |
---|---|
foeq123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 | |
2 | foeq1 5102 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | f1eq123d.2 | . . 3 | |
5 | foeq2 5103 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | f1eq123d.3 | . . 3 | |
8 | foeq3 5104 | . . 3 | |
9 | 7, 8 | syl 14 | . 2 |
10 | 3, 6, 9 | 3bitrd 203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 wfo 4900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-fun 4904 df-fn 4905 df-fo 4908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |