ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq123d Unicode version

Theorem foeq123d 5122
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1  |-  ( ph  ->  F  =  G )
f1eq123d.2  |-  ( ph  ->  A  =  B )
f1eq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
foeq123d  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : B -onto-> D
) )

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3  |-  ( ph  ->  F  =  G )
2 foeq1 5102 . . 3  |-  ( F  =  G  ->  ( F : A -onto-> C  <->  G : A -onto-> C ) )
31, 2syl 14 . 2  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : A -onto-> C
) )
4 f1eq123d.2 . . 3  |-  ( ph  ->  A  =  B )
5 foeq2 5103 . . 3  |-  ( A  =  B  ->  ( G : A -onto-> C  <->  G : B -onto-> C ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( G : A -onto-> C 
<->  G : B -onto-> C
) )
7 f1eq123d.3 . . 3  |-  ( ph  ->  C  =  D )
8 foeq3 5104 . . 3  |-  ( C  =  D  ->  ( G : B -onto-> C  <->  G : B -onto-> D ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( G : B -onto-> C 
<->  G : B -onto-> D
) )
103, 6, 93bitrd 203 1  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : B -onto-> D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243   -onto->wfo 4900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-fo 4908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator