ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco Unicode version

Theorem foco 5116
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )

Proof of Theorem foco
StepHypRef Expression
1 dffo2 5110 . . 3  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  ran  F  =  C ) )
2 dffo2 5110 . . 3  |-  ( G : A -onto-> B  <->  ( G : A --> B  /\  ran  G  =  B ) )
3 fco 5056 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
43ad2ant2r 478 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( F  o.  G ) : A --> C )
5 fdm 5050 . . . . . . . 8  |-  ( F : B --> C  ->  dom  F  =  B )
6 eqtr3 2059 . . . . . . . 8  |-  ( ( dom  F  =  B  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
75, 6sylan 267 . . . . . . 7  |-  ( ( F : B --> C  /\  ran  G  =  B )  ->  dom  F  =  ran  G )
8 rncoeq 4605 . . . . . . . . 9  |-  ( dom 
F  =  ran  G  ->  ran  ( F  o.  G )  =  ran  F )
98eqeq1d 2048 . . . . . . . 8  |-  ( dom 
F  =  ran  G  ->  ( ran  ( F  o.  G )  =  C  <->  ran  F  =  C ) )
109biimpar 281 . . . . . . 7  |-  ( ( dom  F  =  ran  G  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
117, 10sylan 267 . . . . . 6  |-  ( ( ( F : B --> C  /\  ran  G  =  B )  /\  ran  F  =  C )  ->  ran  ( F  o.  G
)  =  C )
1211an32s 502 . . . . 5  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ran  G  =  B )  ->  ran  ( F  o.  G
)  =  C )
1312adantrl 447 . . . 4  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ran  ( F  o.  G )  =  C )
144, 13jca 290 . . 3  |-  ( ( ( F : B --> C  /\  ran  F  =  C )  /\  ( G : A --> B  /\  ran  G  =  B ) )  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
151, 2, 14syl2anb 275 . 2  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
16 dffo2 5110 . 2  |-  ( ( F  o.  G ) : A -onto-> C  <->  ( ( F  o.  G ) : A --> C  /\  ran  ( F  o.  G
)  =  C ) )
1715, 16sylibr 137 1  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   dom cdm 4345   ran crn 4346    o. ccom 4349   -->wf 4898   -onto->wfo 4900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908
This theorem is referenced by:  f1oco  5149
  Copyright terms: Public domain W3C validator