ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdisj Unicode version

Theorem fnresdisj 5009
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 4639 . . 3  |-  Rel  ( F  |`  B )
2 reldm0 4553 . . 3  |-  ( Rel  ( F  |`  B )  ->  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) ) )
31, 2ax-mp 7 . 2  |-  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) )
4 dmres 4632 . . . . 5  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
5 incom 3129 . . . . 5  |-  ( B  i^i  dom  F )  =  ( dom  F  i^i  B )
64, 5eqtri 2060 . . . 4  |-  dom  ( F  |`  B )  =  ( dom  F  i^i  B )
7 fndm 4998 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87ineq1d 3137 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  B )  =  ( A  i^i  B ) )
96, 8syl5eq 2084 . . 3  |-  ( F  Fn  A  ->  dom  ( F  |`  B )  =  ( A  i^i  B ) )
109eqeq1d 2048 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
113, 10syl5rbb 182 1  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    i^i cin 2916   (/)c0 3224   dom cdm 4345    |` cres 4347   Rel wrel 4350    Fn wfn 4897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-dm 4355  df-res 4357  df-fn 4905
This theorem is referenced by:  fvsnun2  5361  fseq1p1m1  8956
  Copyright terms: Public domain W3C validator