ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 4940
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  F  Fn  Rel  F

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 4939 . 2  F  Fn  Fun  F
2 funrel 4862 . 2  Fun 
F  Rel  F
31, 2syl 14 1  F  Fn  Rel  F
Colors of variables: wff set class
Syntax hints:   wi 4   Rel wrel 4293   Fun wfun 4839    Fn wfn 4840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99
This theorem depends on definitions:  df-bi 110  df-fun 4847  df-fn 4848
This theorem is referenced by:  fnbr  4944  fnresdm  4951  fn0  4961  frel  4992  fcoi2  5014  f1rel  5038  f1ocnv  5082  dffn5im  5162  fnex  5326  fnexALT  5682
  Copyright terms: Public domain W3C validator