ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoa Unicode version

Theorem fnoa 6027
Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnoa  |-  +o  Fn  ( On  X.  On )

Proof of Theorem fnoa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oadd 6005 . 2  |-  +o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  suc  z
) ,  x ) `
 y ) )
2 vex 2560 . . 3  |-  y  e. 
_V
3 vex 2560 . . . 4  |-  x  e. 
_V
4 oafnex 6024 . . . 4  |-  ( z  e.  _V  |->  suc  z
)  Fn  _V
53, 4rdgexg 5976 . . 3  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
)  e.  _V )
62, 5ax-mp 7 . 2  |-  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
)  e.  _V
71, 6fnmpt2i 5830 1  |-  +o  Fn  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   _Vcvv 2557    |-> cmpt 3818   Oncon0 4100   suc csuc 4102    X. cxp 4343    Fn wfn 4897   ` cfv 4902   reccrdg 5956    +o coa 5998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005
This theorem is referenced by:  dmaddpi  6423
  Copyright terms: Public domain W3C validator