ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniniseg2 Unicode version

Theorem fniniseg2 5289
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  =  B }
)
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 5288 . 2  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  e.  { B } } )
2 funfvex 5192 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
3 elsng 3390 . . . . 5  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  e.  { B } 
<->  ( F `  x
)  =  B ) )
42, 3syl 14 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  { B }  <->  ( F `  x )  =  B ) )
54funfni 4999 . . 3  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  e.  { B }  <->  ( F `  x )  =  B ) )
65rabbidva 2548 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  e.  { B } }  =  { x  e.  A  |  ( F `  x )  =  B } )
71, 6eqtrd 2072 1  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  =  B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   {crab 2310   _Vcvv 2557   {csn 3375   `'ccnv 4344   dom cdm 4345   "cima 4348   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator