ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 Unicode version

Theorem fn0 5018
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0  |-  ( F  Fn  (/)  <->  F  =  (/) )

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 4997 . . 3  |-  ( F  Fn  (/)  ->  Rel  F )
2 fndm 4998 . . 3  |-  ( F  Fn  (/)  ->  dom  F  =  (/) )
3 reldm0 4553 . . . 4  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
43biimpar 281 . . 3  |-  ( ( Rel  F  /\  dom  F  =  (/) )  ->  F  =  (/) )
51, 2, 4syl2anc 391 . 2  |-  ( F  Fn  (/)  ->  F  =  (/) )
6 fun0 4957 . . . 4  |-  Fun  (/)
7 dm0 4549 . . . 4  |-  dom  (/)  =  (/)
8 df-fn 4905 . . . 4  |-  ( (/)  Fn  (/) 
<->  ( Fun  (/)  /\  dom  (/)  =  (/) ) )
96, 7, 8mpbir2an 849 . . 3  |-  (/)  Fn  (/)
10 fneq1 4987 . . 3  |-  ( F  =  (/)  ->  ( F  Fn  (/)  <->  (/)  Fn  (/) ) )
119, 10mpbiri 157 . 2  |-  ( F  =  (/)  ->  F  Fn  (/) )
125, 11impbii 117 1  |-  ( F  Fn  (/)  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243   (/)c0 3224   dom cdm 4345   Rel wrel 4350   Fun wfun 4896    Fn wfn 4897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904  df-fn 4905
This theorem is referenced by:  mpt0  5026  f0  5080  f00  5081  f1o00  5161  fo00  5162  tpos0  5889  0fz1  8909
  Copyright terms: Public domain W3C validator