ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcof Unicode version

Theorem fmptcof 5331
Description: Version of fmptco 5330 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptcof.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptcof  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A    y, T
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptcof
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 nfcsb1v 2882 . . . . . . 7  |-  F/_ x [_ z  /  x ]_ R
32nfel1 2188 . . . . . 6  |-  F/ x [_ z  /  x ]_ R  e.  B
4 csbeq1a 2860 . . . . . . 7  |-  ( x  =  z  ->  R  =  [_ z  /  x ]_ R )
54eleq1d 2106 . . . . . 6  |-  ( x  =  z  ->  ( R  e.  B  <->  [_ z  /  x ]_ R  e.  B
) )
63, 5rspc 2650 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  R  e.  B  ->  [_ z  /  x ]_ R  e.  B )
)
71, 6mpan9 265 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ R  e.  B )
8 fmptcof.2 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
9 nfcv 2178 . . . . . 6  |-  F/_ z R
109, 2, 4cbvmpt 3851 . . . . 5  |-  ( x  e.  A  |->  R )  =  ( z  e.  A  |->  [_ z  /  x ]_ R )
118, 10syl6eq 2088 . . . 4  |-  ( ph  ->  F  =  ( z  e.  A  |->  [_ z  /  x ]_ R ) )
12 fmptcof.3 . . . . 5  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
13 nfcv 2178 . . . . . 6  |-  F/_ w S
14 nfcsb1v 2882 . . . . . 6  |-  F/_ y [_ w  /  y ]_ S
15 csbeq1a 2860 . . . . . 6  |-  ( y  =  w  ->  S  =  [_ w  /  y ]_ S )
1613, 14, 15cbvmpt 3851 . . . . 5  |-  ( y  e.  B  |->  S )  =  ( w  e.  B  |->  [_ w  /  y ]_ S )
1712, 16syl6eq 2088 . . . 4  |-  ( ph  ->  G  =  ( w  e.  B  |->  [_ w  /  y ]_ S
) )
18 csbeq1 2855 . . . 4  |-  ( w  =  [_ z  /  x ]_ R  ->  [_ w  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
197, 11, 17, 18fmptco 5330 . . 3  |-  ( ph  ->  ( G  o.  F
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S ) )
20 nfcv 2178 . . . 4  |-  F/_ z [_ R  /  y ]_ S
21 nfcv 2178 . . . . 5  |-  F/_ x S
222, 21nfcsb 2884 . . . 4  |-  F/_ x [_ [_ z  /  x ]_ R  /  y ]_ S
234csbeq1d 2858 . . . 4  |-  ( x  =  z  ->  [_ R  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
2420, 22, 23cbvmpt 3851 . . 3  |-  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S )
2519, 24syl6eqr 2090 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
26 eqid 2040 . . . 4  |-  A  =  A
27 nfcvd 2179 . . . . . 6  |-  ( R  e.  B  ->  F/_ y T )
28 fmptcof.4 . . . . . 6  |-  ( y  =  R  ->  S  =  T )
2927, 28csbiegf 2890 . . . . 5  |-  ( R  e.  B  ->  [_ R  /  y ]_ S  =  T )
3029ralimi 2384 . . . 4  |-  ( A. x  e.  A  R  e.  B  ->  A. x  e.  A  [_ R  / 
y ]_ S  =  T )
31 mpteq12 3840 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  [_ R  /  y ]_ S  =  T )  ->  (
x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
3226, 30, 31sylancr 393 . . 3  |-  ( A. x  e.  A  R  e.  B  ->  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
331, 32syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |-> 
[_ R  /  y ]_ S )  =  ( x  e.  A  |->  T ) )
3425, 33eqtrd 2072 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   A.wral 2306   [_csb 2852    |-> cmpt 3818    o. ccom 4349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910
This theorem is referenced by:  fmptcos  5332
  Copyright terms: Public domain W3C validator