Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ferio Unicode version

Theorem ferio 2001
 Description: "Ferio" ("Ferioque"), one of the syllogisms of Aristotelian logic. No is , and some is , therefore some is not . (In Aristotelian notation, EIO-1: MeP and SiM therefore SoP.) For example, given "No homework is fun" and "Some reading is homework", therefore "Some reading is not fun". This is essentially a logical axiom in Aristotelian logic. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 24-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
ferio.maj
ferio.min
Assertion
Ref Expression
ferio

Proof of Theorem ferio
StepHypRef Expression
1 ferio.maj . 2
2 ferio.min . 2
31, 2darii 2000 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 97  wal 1241  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator