ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o Unicode version

Theorem fcof1o 5429
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5423 . . . 4  |-  ( ( F : A --> B  /\  ( G  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
21ad2ant2rl 480 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-> B )
3 fcofo 5424 . . . . 5  |-  ( ( F : A --> B  /\  G : B --> A  /\  ( F  o.  G
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
433expa 1104 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  ( F  o.  G )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
54adantrr 448 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -onto-> B )
6 df-f1o 4909 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
72, 5, 6sylanbrc 394 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-onto-> B )
8 simprl 483 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F  o.  G )  =  (  _I  |`  B ) )
98coeq2d 4498 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  ( `' F  o.  (  _I  |`  B ) ) )
10 coass 4839 . . . 4  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
11 f1ococnv1 5155 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
127, 11syl 14 . . . . . 6  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
1312coeq1d 4497 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  ( (  _I  |`  A )  o.  G ) )
14 fcoi2 5071 . . . . . 6  |-  ( G : B --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
1514ad2antlr 458 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
(  _I  |`  A )  o.  G )  =  G )
1613, 15eqtrd 2072 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
1710, 16syl5eqr 2086 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
18 f1ocnv 5139 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
19 f1of 5126 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
20 fcoi1 5070 . . . 4  |-  ( `' F : B --> A  -> 
( `' F  o.  (  _I  |`  B ) )  =  `' F
)
217, 18, 19, 204syl 18 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  (  _I  |`  B ) )  =  `' F )
229, 17, 213eqtr3rd 2081 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  `' F  =  G )
237, 22jca 290 1  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    _I cid 4025   `'ccnv 4344    |` cres 4347    o. ccom 4349   -->wf 4898   -1-1->wf1 4899   -onto->wfo 4900   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator