ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1 Unicode version

Theorem fcof1 5423
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )

Proof of Theorem fcof1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 102 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A --> B )
2 simprr 484 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
32fveq2d 5182 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R `  ( F `  x
) )  =  ( R `  ( F `
 y ) ) )
4 simpll 481 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  F : A
--> B )
5 simprll 489 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  e.  A )
6 fvco3 5244 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( R  o.  F ) `  x
)  =  ( R `
 ( F `  x ) ) )
74, 5, 6syl2anc 391 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( R `  ( F `
 x ) ) )
8 simprlr 490 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  y  e.  A )
9 fvco3 5244 . . . . . . . 8  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( R  o.  F ) `  y
)  =  ( R `
 ( F `  y ) ) )
104, 8, 9syl2anc 391 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( R `  ( F `
 y ) ) )
113, 7, 103eqtr4d 2082 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( ( R  o.  F
) `  y )
)
12 simplr 482 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R  o.  F )  =  (  _I  |`  A )
)
1312fveq1d 5180 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( (  _I  |`  A ) `
 x ) )
1412fveq1d 5180 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( (  _I  |`  A ) `
 y ) )
1511, 13, 143eqtr3d 2080 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  ( (  _I  |`  A ) `
 y ) )
16 fvresi 5356 . . . . . 6  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
175, 16syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  x )
18 fvresi 5356 . . . . . 6  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
198, 18syl 14 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
2015, 17, 193eqtr3d 2080 . . . 4  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  =  y )
2120expr 357 . . 3  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
2221ralrimivva 2401 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
23 dff13 5407 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
241, 22, 23sylanbrc 394 1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306    _I cid 4025    |` cres 4347    o. ccom 4349   -->wf 4898   -1-1->wf1 4899   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fv 4910
This theorem is referenced by:  fcof1o  5429
  Copyright terms: Public domain W3C validator