Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ss | Unicode version |
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5092 | . . 3 | |
2 | fss 5054 | . . 3 | |
3 | 1, 2 | sylan 267 | . 2 |
4 | df-f1 4907 | . . . 4 | |
5 | 4 | simprbi 260 | . . 3 |
6 | 5 | adantr 261 | . 2 |
7 | df-f1 4907 | . 2 | |
8 | 3, 6, 7 | sylanbrc 394 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wss 2917 ccnv 4344 wfun 4896 wf 4898 wf1 4899 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 df-f 4906 df-f1 4907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |