ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1mpt Unicode version

Theorem f1mpt 5410
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1  |-  F  =  ( x  e.  A  |->  C )
f1mpt.2  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
f1mpt  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    y, F
Allowed substitution hints:    C( x)    D( y)    F( x)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  C )
2 nfmpt1 3850 . . . 4  |-  F/_ x
( x  e.  A  |->  C )
31, 2nfcxfr 2175 . . 3  |-  F/_ x F
4 nfcv 2178 . . 3  |-  F/_ y F
53, 4dff13f 5409 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
61fmpt 5319 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
76anbi1i 431 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
8 f1mpt.2 . . . . . . 7  |-  ( x  =  y  ->  C  =  D )
98eleq1d 2106 . . . . . 6  |-  ( x  =  y  ->  ( C  e.  B  <->  D  e.  B ) )
109cbvralv 2533 . . . . 5  |-  ( A. x  e.  A  C  e.  B  <->  A. y  e.  A  D  e.  B )
11 raaanv 3328 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B ) )
121fvmpt2 5254 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( F `  x
)  =  C )
138, 1fvmptg 5248 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  D  e.  B )  ->  ( F `  y
)  =  D )
1412, 13eqeqan12d 2055 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  C  e.  B
)  /\  ( y  e.  A  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1514an4s 522 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1615imbi1d 220 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) )
1716ex 108 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( C  e.  B  /\  D  e.  B )  ->  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) ) )
1817ralimdva 2387 . . . . . . . . 9  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  A. y  e.  A  ( (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
) ) )
19 ralbi 2445 . . . . . . . . 9  |-  ( A. y  e.  A  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) )  -> 
( A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2018, 19syl6 29 . . . . . . . 8  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  ( A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y )
) ) )
2120ralimia 2382 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
22 ralbi 2445 . . . . . . 7  |-  ( A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2321, 22syl 14 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2411, 23sylbir 125 . . . . 5  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2510, 24sylan2b 271 . . . 4  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  C  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2625anidms 377 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2726pm5.32i 427 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
285, 7, 273bitr2i 197 1  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306    |-> cmpt 3818   -->wf 4898   -1-1->wf1 4899   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator