ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4c Unicode version

Theorem exp4c 350
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4c.1  |-  ( ph  ->  ( ( ( ps 
/\  ch )  /\  th )  ->  ta ) )
Assertion
Ref Expression
exp4c  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp4c
StepHypRef Expression
1 exp4c.1 . . 3  |-  ( ph  ->  ( ( ( ps 
/\  ch )  /\  th )  ->  ta ) )
21expd 245 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( th 
->  ta ) ) )
32expd 245 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  leexp1a  9309
  Copyright terms: Public domain W3C validator