Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeudc Unicode version

Theorem exmoeudc 1963
 Description: Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.)
Assertion
Ref Expression
exmoeudc DECID

Proof of Theorem exmoeudc
StepHypRef Expression
1 df-mo 1904 . . . 4
21biimpi 113 . . 3
32com12 27 . 2
41biimpri 124 . . . 4
5 euex 1930 . . . 4
64, 5imim12i 53 . . 3
7 peircedc 820 . . 3 DECID
86, 7syl5 28 . 2 DECID
93, 8impbid2 131 1 DECID
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  DECID wdc 742  wex 1381  weu 1900  wmo 1901 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-dc 743  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator