ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmodc Structured version   Unicode version

Theorem exmodc 1947
Description: If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
Assertion
Ref Expression
exmodc DECID

Proof of Theorem exmodc
StepHypRef Expression
1 df-dc 742 . 2 DECID
2 pm2.21 547 . . . 4
3 df-mo 1901 . . . 4
42, 3sylibr 137 . . 3
54orim2i 677 . 2
61, 5sylbi 114 1 DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wo 628  DECID wdc 741  wex 1378  weu 1897  wmo 1898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742  df-mo 1901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator