![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdd | Unicode version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
exlimdd.1 |
![]() ![]() ![]() ![]() |
exlimdd.2 |
![]() ![]() ![]() ![]() |
exlimdd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimdd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimdd |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimdd.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | exlimdd.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | exlimdd.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | ex 108 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 3, 5 | exlimd 1488 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie2 1383 ax-4 1400 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: fvmptdf 5258 ovmpt2df 5632 ltexprlemm 6698 |
Copyright terms: Public domain | W3C validator |