Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinc Unicode version

Theorem eqvinc 2667
 Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
eqvinc.1
Assertion
Ref Expression
eqvinc
Distinct variable groups:   ,   ,

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . . . . 5
21isseti 2563 . . . 4
3 ax-1 5 . . . . . 6
4 eqtr 2057 . . . . . . 7
54ex 108 . . . . . 6
63, 5jca 290 . . . . 5
76eximi 1491 . . . 4
8 pm3.43 534 . . . . 5
98eximi 1491 . . . 4
102, 7, 9mp2b 8 . . 3
111019.37aiv 1565 . 2
12 eqtr2 2058 . . 3
1312exlimiv 1489 . 2
1411, 13impbii 117 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243  wex 1381   wcel 1393  cvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559 This theorem is referenced by:  eqvincf  2669
 Copyright terms: Public domain W3C validator