ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinc Unicode version

Theorem eqvinc 2667
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
eqvinc.1  |-  A  e. 
_V
Assertion
Ref Expression
eqvinc  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . . . . 5  |-  A  e. 
_V
21isseti 2563 . . . 4  |-  E. x  x  =  A
3 ax-1 5 . . . . . 6  |-  ( x  =  A  ->  ( A  =  B  ->  x  =  A ) )
4 eqtr 2057 . . . . . . 7  |-  ( ( x  =  A  /\  A  =  B )  ->  x  =  B )
54ex 108 . . . . . 6  |-  ( x  =  A  ->  ( A  =  B  ->  x  =  B ) )
63, 5jca 290 . . . . 5  |-  ( x  =  A  ->  (
( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) ) )
76eximi 1491 . . . 4  |-  ( E. x  x  =  A  ->  E. x ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) ) )
8 pm3.43 534 . . . . 5  |-  ( ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) )  -> 
( A  =  B  ->  ( x  =  A  /\  x  =  B ) ) )
98eximi 1491 . . . 4  |-  ( E. x ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) )  ->  E. x ( A  =  B  ->  (
x  =  A  /\  x  =  B )
) )
102, 7, 9mp2b 8 . . 3  |-  E. x
( A  =  B  ->  ( x  =  A  /\  x  =  B ) )
111019.37aiv 1565 . 2  |-  ( A  =  B  ->  E. x
( x  =  A  /\  x  =  B ) )
12 eqtr2 2058 . . 3  |-  ( ( x  =  A  /\  x  =  B )  ->  A  =  B )
1312exlimiv 1489 . 2  |-  ( E. x ( x  =  A  /\  x  =  B )  ->  A  =  B )
1411, 13impbii 117 1  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  eqvincf  2669
  Copyright terms: Public domain W3C validator