ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtr Structured version   Unicode version

Theorem equtr 1592
Description: A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtr

Proof of Theorem equtr
StepHypRef Expression
1 ax-8 1392 . 2
21equcoms 1591 1
Colors of variables: wff set class
Syntax hints:   wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-17 1416  ax-i9 1420
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  equtrr  1593  equequ1  1595  equveli  1639  equvin  1740
  Copyright terms: Public domain W3C validator