ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5a Structured version   Unicode version

Theorem equs5a 1672
Description: A property related to substitution that unlike equs5 1707 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
equs5a

Proof of Theorem equs5a
StepHypRef Expression
1 hba1 1430 . 2
2 ax-11 1394 . . 3
32imp 115 . 2
41, 3exlimih 1481 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-gen 1335  ax-ie2 1380  ax-11 1394  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  equs5e  1673  sb4a  1679  equs45f  1680
  Copyright terms: Public domain W3C validator