ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd Unicode version

Theorem eqrd 2957
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0  F/
eqrd.1  F/_
eqrd.2  F/_
eqrd.3
Assertion
Ref Expression
eqrd

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3  F/
2 eqrd.1 . . 3  F/_
3 eqrd.2 . . 3  F/_
4 eqrd.3 . . . 4
54biimpd 132 . . 3
61, 2, 3, 5ssrd 2944 . 2  C_
74biimprd 147 . . 3
81, 3, 2, 7ssrd 2944 . 2  C_
96, 8eqssd 2956 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98   wceq 1242   F/wnf 1346   wcel 1390   F/_wnfc 2162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-in 2918  df-ss 2925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator