ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2f Unicode version

Theorem eqfnfv2f 5269
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5265 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1  |-  F/_ x F
eqfnfv2f.2  |-  F/_ x G
Assertion
Ref Expression
eqfnfv2f  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem eqfnfv2f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5265 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
2 eqfnfv2f.1 . . . . 5  |-  F/_ x F
3 nfcv 2178 . . . . 5  |-  F/_ x
z
42, 3nffv 5185 . . . 4  |-  F/_ x
( F `  z
)
5 eqfnfv2f.2 . . . . 5  |-  F/_ x G
65, 3nffv 5185 . . . 4  |-  F/_ x
( G `  z
)
74, 6nfeq 2185 . . 3  |-  F/ x
( F `  z
)  =  ( G `
 z )
8 nfv 1421 . . 3  |-  F/ z ( F `  x
)  =  ( G `
 x )
9 fveq2 5178 . . . 4  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
10 fveq2 5178 . . . 4  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
119, 10eqeq12d 2054 . . 3  |-  ( z  =  x  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  x )  =  ( G `  x ) ) )
127, 8, 11cbvral 2529 . 2  |-  ( A. z  e.  A  ( F `  z )  =  ( G `  z )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
131, 12syl6bb 185 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   F/_wnfc 2165   A.wral 2306    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator