ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 Unicode version

Theorem eqfnfv2 5209
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2  F  Fn  G  Fn  F  G  F `  G `
Distinct variable groups:   ,   , F   , G
Allowed substitution hint:   ()

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4478 . . . 4  F  G  dom  F  dom  G
2 fndm 4941 . . . . 5  F  Fn  dom  F
3 fndm 4941 . . . . 5  G  Fn  dom  G
42, 3eqeqan12d 2052 . . . 4  F  Fn  G  Fn  dom  F 
dom  G
51, 4syl5ib 143 . . 3  F  Fn  G  Fn  F  G
65pm4.71rd 374 . 2  F  Fn  G  Fn  F  G  F  G
7 fneq2 4931 . . . . . 6  G  Fn  G  Fn
87biimparc 283 . . . . 5  G  Fn  G  Fn
9 eqfnfv 5208 . . . . 5  F  Fn  G  Fn  F  G  F `  G `
108, 9sylan2 270 . . . 4  F  Fn  G  Fn  F  G  F `  G `
1110anassrs 380 . . 3  F  Fn  G  Fn  F  G  F `  G `
1211pm5.32da 425 . 2  F  Fn  G  Fn  F  G  F `  G `
136, 12bitrd 177 1  F  Fn  G  Fn  F  G  F `  G `
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   wceq 1242  wral 2300   dom cdm 4288    Fn wfn 4840   ` cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by:  eqfnfv3  5210  eqfunfv  5213  eqfnov  5549  2ffzeq  8768
  Copyright terms: Public domain W3C validator