![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtrr.1 |
![]() ![]() ![]() ![]() |
eqbrtrr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2041 |
. 2
![]() ![]() ![]() ![]() |
3 | eqbrtrr.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqbrtri 3774 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-un 2916 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 |
This theorem is referenced by: 3brtr3i 3782 expnass 9010 |
Copyright terms: Public domain | W3C validator |