![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrd | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqbrtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqbrtrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | breq1d 3774 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbird 156 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 |
This theorem is referenced by: eqbrtrrd 3786 dif1en 6337 prarloclemcalc 6600 ltexprlemopu 6701 recexprlemloc 6729 caucvgprprlemloccalc 6782 divge1 8649 xltnegi 8748 ubmelm1fzo 9082 qbtwnrelemcalc 9110 ceiqm1l 9153 ceilqm1lt 9154 ceilqle 9156 modqlt 9175 bernneq 9369 resqrexlemdec 9609 resqrexlemcalc2 9613 resqrexlemglsq 9620 resqrexlemga 9621 abslt 9684 amgm2 9714 icodiamlt 9776 climconst 9811 iserclim0 9826 mulcn2 9833 iiserex 9859 climlec2 9861 iserige0 9863 climcau 9866 climcvg1nlem 9868 qdencn 10124 |
Copyright terms: Public domain | W3C validator |