ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv Unicode version

Theorem eq0rdv 3261
Description: Deduction rule for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1  |-  ( ph  ->  -.  x  e.  A
)
Assertion
Ref Expression
eq0rdv  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4  |-  ( ph  ->  -.  x  e.  A
)
21pm2.21d 549 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  (/) ) )
32ssrdv 2951 . 2  |-  ( ph  ->  A  C_  (/) )
4 ss0 3257 . 2  |-  ( A 
C_  (/)  ->  A  =  (/) )
53, 4syl 14 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1243    e. wcel 1393    C_ wss 2917   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by:  nfvres  5206  snon0  6356  fzdisj  8916
  Copyright terms: Public domain W3C validator