ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqbreq2 Unicode version

Theorem enqbreq2 6455
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
enqbreq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 5801 . . 3  |-  ( A  e.  ( N.  X.  N. )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2nd2 5801 . . 3  |-  ( B  e.  ( N.  X.  N. )  ->  B  = 
<. ( 1st `  B
) ,  ( 2nd `  B ) >. )
31, 2breqan12d 3779 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ~Q  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
)
4 xp1st 5792 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
5 xp2nd 5793 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
64, 5jca 290 . . 3  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  e.  N.  /\  ( 2nd `  A )  e. 
N. ) )
7 xp1st 5792 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
8 xp2nd 5793 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
97, 8jca 290 . . 3  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( 1st `  B )  e.  N.  /\  ( 2nd `  B )  e. 
N. ) )
10 enqbreq 6454 . . 3  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  B )  e.  N. ) )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B )
>. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) ) ) )
116, 9, 10syl2an 273 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) ) ) )
12 mulcompig 6429 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 1st `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
135, 7, 12syl2an 273 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  A
)  .N  ( 1st `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
1413eqeq2d 2051 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) )  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
153, 11, 143bitrd 203 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764    X. cxp 4343   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   N.cnpi 6370    .N cmi 6372    ~Q ceq 6377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-mi 6404  df-enq 6445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator