ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzuzle Unicode version

Theorem eluzuzle 8481
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( C  e.  (
ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 8479 . 2  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
2 simpll 481 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  e.  ZZ )
3 simpr2 911 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  ZZ )
4 zre 8249 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
54ad2antrr 457 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  e.  RR )
6 zre 8249 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
763ad2ant1 925 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  A  e.  RR )
87adantl 262 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  A  e.  RR )
9 zre 8249 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  RR )
1093ad2ant2 926 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  C  e.  RR )
1110adantl 262 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  RR )
12 simplr 482 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  <_  A
)
13 simpr3 912 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  A  <_  C
)
145, 8, 11, 12, 13letrd 7138 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  <_  C
)
15 eluz2 8479 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  C  e.  ZZ  /\  B  <_  C ) )
162, 3, 14, 15syl3anbrc 1088 . . 3  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  (
ZZ>= `  B ) )
1716ex 108 . 2  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  C  e.  ( ZZ>= `  B )
) )
181, 17syl5bi 141 1  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( C  e.  (
ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    e. wcel 1393   class class class wbr 3764   ` cfv 4902   RRcr 6888    <_ cle 7061   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltwlin 6997
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-neg 7185  df-z 8246  df-uz 8474
This theorem is referenced by:  eluz2nn  8511  uzuzle23  8513  eluzge3nn  8514
  Copyright terms: Public domain W3C validator