ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz1 Unicode version

Theorem eluz1 8477
Description: Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )

Proof of Theorem eluz1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uzval 8475 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  =  { k  e.  ZZ  |  M  <_  k } )
21eleq2d 2107 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  N  e.  { k  e.  ZZ  |  M  <_  k } ) )
3 breq2 3768 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
43elrab 2698 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
52, 4syl6bb 185 1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    e. wcel 1393   {crab 2310   class class class wbr 3764   ` cfv 4902    <_ cle 7061   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-cnex 6975  ax-resscn 6976
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-neg 7185  df-z 8246  df-uz 8474
This theorem is referenced by:  eluz2  8479  eluz1i  8480  eluz  8486  uzid  8487  uzss  8493  eluzp1m1  8496  eluzadd  8501  eluzsub  8502  raluz  8521  rexuz  8523  caucvgrelemcau  9579  caucvgre  9580  ialgcvga  9890
  Copyright terms: Public domain W3C validator