Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg Structured version   Unicode version

Theorem elrnmptg 4529
 Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1
Assertion
Ref Expression
elrnmptg
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem elrnmptg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4
21rnmpt 4525 . . 3
32eleq2i 2101 . 2
4 r19.29 2444 . . . . 5
5 eleq1 2097 . . . . . . . 8
65biimparc 283 . . . . . . 7
7 elex 2560 . . . . . . 7
86, 7syl 14 . . . . . 6
98rexlimivw 2423 . . . . 5
104, 9syl 14 . . . 4
1110ex 108 . . 3
12 eqeq1 2043 . . . . 5
1312rexbidv 2321 . . . 4
1413elab3g 2687 . . 3
1511, 14syl 14 . 2
163, 15syl5bb 181 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1242   wcel 1390  cab 2023  wral 2300  wrex 2301  cvv 2551   cmpt 3809   crn 4289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-mpt 3811  df-cnv 4296  df-dm 4298  df-rn 4299 This theorem is referenced by:  elrnmpti  4530  fliftel  5376
 Copyright terms: Public domain W3C validator