ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0 Structured version   Unicode version

Theorem elqsn0 6111
Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0  dom  R 
/. R  =/=  (/)

Proof of Theorem elqsn0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6110 . 2  dom  R 
/. R
2 n0r 3228 . 2  =/=  (/)
31, 2syl 14 1  dom  R 
/. R  =/=  (/)
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wceq 1242  wex 1378   wcel 1390    =/= wne 2201   (/)c0 3218   dom cdm 4288   /.cqs 6041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-ec 6044  df-qs 6048
This theorem is referenced by:  0nnq  6348  0nsr  6677
  Copyright terms: Public domain W3C validator