Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpw2g | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3368 | . 2 | |
2 | ssexg 3896 | . . . 4 | |
3 | elpwg 3367 | . . . . 5 | |
4 | 3 | biimparc 283 | . . . 4 |
5 | 2, 4 | syldan 266 | . . 3 |
6 | 5 | expcom 109 | . 2 |
7 | 1, 6 | impbid2 131 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wcel 1393 cvv 2557 wss 2917 cpw 3359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 |
This theorem is referenced by: elpw2 3911 pwnss 3912 |
Copyright terms: Public domain | W3C validator |