Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 Unicode version

Theorem elpw2 3911
 Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1
Assertion
Ref Expression
elpw2

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2
2 elpw2g 3910 . 2
31, 2ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wb 98   wcel 1393  cvv 2557   wss 2917  cpw 3359 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361 This theorem is referenced by:  axpweq  3924  genpelxp  6609  ltexprlempr  6706  recexprlempr  6730  cauappcvgprlemcl  6751  cauappcvgprlemladd  6756  caucvgprlemcl  6774  caucvgprprlemcl  6802  uzf  8476  ixxf  8767  fzf  8878
 Copyright terms: Public domain W3C validator