ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzonlteqm1 Unicode version

Theorem elfzonlteqm1 9064
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
elfzonlteqm1  |-  ( ( A  e.  ( 0..^ B )  /\  -.  A  <  ( B  - 
1 ) )  ->  A  =  ( B  -  1 ) )

Proof of Theorem elfzonlteqm1
StepHypRef Expression
1 0z 8254 . . . 4  |-  0  e.  ZZ
2 elfzo0 9036 . . . . 5  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
3 elnnuz 8507 . . . . . . . 8  |-  ( B  e.  NN  <->  B  e.  ( ZZ>= `  1 )
)
43biimpi 113 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ( ZZ>= `  1 )
)
5 0p1e1 8029 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
65a1i 9 . . . . . . . 8  |-  ( B  e.  NN  ->  (
0  +  1 )  =  1 )
76fveq2d 5182 . . . . . . 7  |-  ( B  e.  NN  ->  ( ZZ>=
`  ( 0  +  1 ) )  =  ( ZZ>= `  1 )
)
84, 7eleqtrrd 2117 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  ( ZZ>= `  ( 0  +  1 ) ) )
983ad2ant2 926 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  B  e.  ( ZZ>= `  ( 0  +  1 ) ) )
102, 9sylbi 114 . . . 4  |-  ( A  e.  ( 0..^ B )  ->  B  e.  ( ZZ>= `  ( 0  +  1 ) ) )
11 fzosplitsnm1 9063 . . . 4  |-  ( ( 0  e.  ZZ  /\  B  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
( 0..^ B )  =  ( ( 0..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } ) )
121, 10, 11sylancr 393 . . 3  |-  ( A  e.  ( 0..^ B )  ->  ( 0..^ B )  =  ( ( 0..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
13 eleq2 2101 . . . 4  |-  ( ( 0..^ B )  =  ( ( 0..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  ->  ( A  e.  ( 0..^ B )  <->  A  e.  ( ( 0..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) ) )
14 elun 3084 . . . . 5  |-  ( A  e.  ( ( 0..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } )  <->  ( A  e.  ( 0..^ ( B  -  1 ) )  \/  A  e.  {
( B  -  1 ) } ) )
15 elfzo0 9036 . . . . . . 7  |-  ( A  e.  ( 0..^ ( B  -  1 ) )  <->  ( A  e. 
NN0  /\  ( B  -  1 )  e.  NN  /\  A  < 
( B  -  1 ) ) )
16 pm2.24 551 . . . . . . . 8  |-  ( A  <  ( B  - 
1 )  ->  ( -.  A  <  ( B  -  1 )  ->  A  =  ( B  -  1 ) ) )
17163ad2ant3 927 . . . . . . 7  |-  ( ( A  e.  NN0  /\  ( B  -  1
)  e.  NN  /\  A  <  ( B  - 
1 ) )  -> 
( -.  A  < 
( B  -  1 )  ->  A  =  ( B  -  1
) ) )
1815, 17sylbi 114 . . . . . 6  |-  ( A  e.  ( 0..^ ( B  -  1 ) )  ->  ( -.  A  <  ( B  - 
1 )  ->  A  =  ( B  - 
1 ) ) )
19 elsni 3393 . . . . . . 7  |-  ( A  e.  { ( B  -  1 ) }  ->  A  =  ( B  -  1 ) )
2019a1d 22 . . . . . 6  |-  ( A  e.  { ( B  -  1 ) }  ->  ( -.  A  <  ( B  -  1 )  ->  A  =  ( B  -  1
) ) )
2118, 20jaoi 636 . . . . 5  |-  ( ( A  e.  ( 0..^ ( B  -  1 ) )  \/  A  e.  { ( B  - 
1 ) } )  ->  ( -.  A  <  ( B  -  1 )  ->  A  =  ( B  -  1
) ) )
2214, 21sylbi 114 . . . 4  |-  ( A  e.  ( ( 0..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } )  -> 
( -.  A  < 
( B  -  1 )  ->  A  =  ( B  -  1
) ) )
2313, 22syl6bi 152 . . 3  |-  ( ( 0..^ B )  =  ( ( 0..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  ->  ( A  e.  ( 0..^ B )  ->  ( -.  A  <  ( B  -  1 )  ->  A  =  ( B  -  1 ) ) ) )
2412, 23mpcom 32 . 2  |-  ( A  e.  ( 0..^ B )  ->  ( -.  A  <  ( B  - 
1 )  ->  A  =  ( B  - 
1 ) ) )
2524imp 115 1  |-  ( ( A  e.  ( 0..^ B )  /\  -.  A  <  ( B  - 
1 ) )  ->  A  =  ( B  -  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393    u. cun 2915   {csn 3375   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   0cc0 6887   1c1 6888    + caddc 6890    < clt 7058    - cmin 7180   NNcn 7912   NN0cn0 8179   ZZcz 8243   ZZ>=cuz 8471  ..^cfzo 8997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-addcom 6982  ax-addass 6984  ax-distr 6986  ax-i2m1 6987  ax-0id 6990  ax-rnegex 6991  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-apti 6997  ax-pre-ltadd 6998
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-inn 7913  df-n0 8180  df-z 8244  df-uz 8472  df-fz 8873  df-fzo 8998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator