Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab1 Unicode version

Theorem elab1 9922
Description: One implication of elab 2687. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elab1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elab1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab1
StepHypRef Expression
1 nfv 1421 . 2  |-  F/ x ps
2 elab1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
31, 2elabf1 9920 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   {cab 2026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator