ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeeanv Unicode version

Theorem eeeanv 1808
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eeeanv  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Distinct variable groups:    ph, y    ph, z    x, z, ps    x, y, ch
Allowed substitution hints:    ph( x)    ps( y)    ch( z)

Proof of Theorem eeeanv
StepHypRef Expression
1 df-3an 887 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
213exbii 1498 . 2  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  E. x E. y E. z ( ( ph  /\  ps )  /\  ch ) )
3 eeanv 1807 . . 3  |-  ( E. y E. z ( ( ph  /\  ps )  /\  ch )  <->  ( E. y ( ph  /\  ps )  /\  E. z ch ) )
43exbii 1496 . 2  |-  ( E. x E. y E. z ( ( ph  /\ 
ps )  /\  ch ) 
<->  E. x ( E. y ( ph  /\  ps )  /\  E. z ch ) )
5 eeanv 1807 . . . 4  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
65anbi1i 431 . . 3  |-  ( ( E. x E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( ( E. x ph  /\ 
E. y ps )  /\  E. z ch )
)
7 19.41v 1782 . . 3  |-  ( E. x ( E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( E. x E. y
( ph  /\  ps )  /\  E. z ch )
)
8 df-3an 887 . . 3  |-  ( ( E. x ph  /\  E. y ps  /\  E. z ch )  <->  ( ( E. x ph  /\  E. y ps )  /\  E. z ch ) )
96, 7, 83bitr4i 201 . 2  |-  ( E. x ( E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
102, 4, 93bitri 195 1  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    /\ w3a 885   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-3an 887  df-nf 1350
This theorem is referenced by:  vtocl3  2610  spc3egv  2644  spc3gv  2645  eloprabga  5591  prarloc  6601
  Copyright terms: Public domain W3C validator