Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecoviass | Unicode version |
Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.) |
Ref | Expression |
---|---|
ecoviass.1 | |
ecoviass.2 | |
ecoviass.3 | |
ecoviass.4 | |
ecoviass.5 | |
ecoviass.6 | |
ecoviass.7 | |
ecoviass.8 | |
ecoviass.9 |
Ref | Expression |
---|---|
ecoviass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecoviass.1 | . 2 | |
2 | oveq1 5519 | . . . 4 | |
3 | 2 | oveq1d 5527 | . . 3 |
4 | oveq1 5519 | . . 3 | |
5 | 3, 4 | eqeq12d 2054 | . 2 |
6 | oveq2 5520 | . . . 4 | |
7 | 6 | oveq1d 5527 | . . 3 |
8 | oveq1 5519 | . . . 4 | |
9 | 8 | oveq2d 5528 | . . 3 |
10 | 7, 9 | eqeq12d 2054 | . 2 |
11 | oveq2 5520 | . . 3 | |
12 | oveq2 5520 | . . . 4 | |
13 | 12 | oveq2d 5528 | . . 3 |
14 | 11, 13 | eqeq12d 2054 | . 2 |
15 | ecoviass.8 | . . . 4 | |
16 | ecoviass.9 | . . . 4 | |
17 | opeq12 3551 | . . . . 5 | |
18 | 17 | eceq1d 6142 | . . . 4 |
19 | 15, 16, 18 | syl2anc 391 | . . 3 |
20 | ecoviass.2 | . . . . . . 7 | |
21 | 20 | oveq1d 5527 | . . . . . 6 |
22 | 21 | adantr 261 | . . . . 5 |
23 | ecoviass.6 | . . . . . 6 | |
24 | ecoviass.4 | . . . . . 6 | |
25 | 23, 24 | sylan 267 | . . . . 5 |
26 | 22, 25 | eqtrd 2072 | . . . 4 |
27 | 26 | 3impa 1099 | . . 3 |
28 | ecoviass.3 | . . . . . . 7 | |
29 | 28 | oveq2d 5528 | . . . . . 6 |
30 | 29 | adantl 262 | . . . . 5 |
31 | ecoviass.7 | . . . . . 6 | |
32 | ecoviass.5 | . . . . . 6 | |
33 | 31, 32 | sylan2 270 | . . . . 5 |
34 | 30, 33 | eqtrd 2072 | . . . 4 |
35 | 34 | 3impb 1100 | . . 3 |
36 | 19, 27, 35 | 3eqtr4d 2082 | . 2 |
37 | 1, 5, 10, 14, 36 | 3ecoptocl 6195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 w3a 885 wceq 1243 wcel 1393 cop 3378 cxp 4343 (class class class)co 5512 cec 6104 cqs 6105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fv 4910 df-ov 5515 df-ec 6108 df-qs 6112 |
This theorem is referenced by: addassnqg 6480 mulassnqg 6482 addasssrg 6841 mulasssrg 6843 axaddass 6946 axmulass 6947 |
Copyright terms: Public domain | W3C validator |