ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovdi Unicode version

Theorem ecovdi 6217
Description: Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6218 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovdi.1  |-  D  =  ( ( S  X.  S ) /.  .~  )
ecovdi.2  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. M ,  N >. ]  .~  )
ecovdi.3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
ecovdi.4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  =  [ <. W ,  X >. ]  .~  )
ecovdi.5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. v ,  u >. ]  .~  )  =  [ <. Y ,  Z >. ]  .~  )
ecovdi.6  |-  ( ( ( W  e.  S  /\  X  e.  S
)  /\  ( Y  e.  S  /\  Z  e.  S ) )  -> 
( [ <. W ,  X >. ]  .~  .+  [
<. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )
ecovdi.7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( M  e.  S  /\  N  e.  S
) )
ecovdi.8  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( W  e.  S  /\  X  e.  S
) )
ecovdi.9  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( Y  e.  S  /\  Z  e.  S
) )
ecovdi.10  |-  H  =  K
ecovdi.11  |-  J  =  L
Assertion
Ref Expression
ecovdi  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( A  .x.  ( B  .+  C ) )  =  ( ( A 
.x.  B )  .+  ( A  .x.  C ) ) )
Distinct variable groups:    x, y, z, w, v, u, A   
z, B, w, v, u    w, C, v, u    x,  .+ , y, z, w, v, u    x,  .~ , y, z, w, v, u    x, S, y, z, w, v, u   
x,  .x. , y, z, w, v, u    z, D, w, v, u
Allowed substitution hints:    B( x, y)    C( x, y, z)    D( x, y)    H( x, y, z, w, v, u)    J( x, y, z, w, v, u)    K( x, y, z, w, v, u)    L( x, y, z, w, v, u)    M( x, y, z, w, v, u)    N( x, y, z, w, v, u)    W( x, y, z, w, v, u)    X( x, y, z, w, v, u)    Y( x, y, z, w, v, u)    Z( x, y, z, w, v, u)

Proof of Theorem ecovdi
StepHypRef Expression
1 ecovdi.1 . 2  |-  D  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5519 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( A  .x.  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) ) )
3 oveq1 5519 . . . 4  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  =  ( A  .x.  [ <. z ,  w >. ]  .~  ) )
4 oveq1 5519 . . . 4  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. v ,  u >. ]  .~  )  =  ( A  .x.  [ <. v ,  u >. ]  .~  ) )
53, 4oveq12d 5530 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y
>. ]  .~  .x.  [ <. v ,  u >. ]  .~  ) )  =  ( ( A  .x.  [ <. z ,  w >. ]  .~  )  .+  ( A  .x.  [
<. v ,  u >. ]  .~  ) ) )
62, 5eqeq12d 2054 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( ( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y
>. ]  .~  .x.  [ <. v ,  u >. ]  .~  ) )  <->  ( A  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( ( A  .x.  [
<. z ,  w >. ]  .~  )  .+  ( A  .x.  [ <. v ,  u >. ]  .~  )
) ) )
7 oveq1 5519 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  ( B  .+  [ <. v ,  u >. ]  .~  ) )
87oveq2d 5528 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .x.  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  ( A  .x.  ( B  .+  [ <. v ,  u >. ]  .~  )
) )
9 oveq2 5520 . . . 4  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .x.  [ <. z ,  w >. ]  .~  )  =  ( A  .x.  B ) )
109oveq1d 5527 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .x.  [
<. z ,  w >. ]  .~  )  .+  ( A  .x.  [ <. v ,  u >. ]  .~  )
)  =  ( ( A  .x.  B ) 
.+  ( A  .x.  [
<. v ,  u >. ]  .~  ) ) )
118, 10eqeq12d 2054 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .x.  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  ( ( A  .x.  [
<. z ,  w >. ]  .~  )  .+  ( A  .x.  [ <. v ,  u >. ]  .~  )
)  <->  ( A  .x.  ( B  .+  [ <. v ,  u >. ]  .~  ) )  =  ( ( A  .x.  B
)  .+  ( A  .x.  [ <. v ,  u >. ]  .~  ) ) ) )
12 oveq2 5520 . . . 4  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( B  .+  [ <. v ,  u >. ]  .~  )  =  ( B  .+  C ) )
1312oveq2d 5528 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( A  .x.  ( B  .+  [ <. v ,  u >. ]  .~  )
)  =  ( A 
.x.  ( B  .+  C ) ) )
14 oveq2 5520 . . . 4  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( A  .x.  [ <. v ,  u >. ]  .~  )  =  ( A  .x.  C ) )
1514oveq2d 5528 . . 3  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( A  .x.  B )  .+  ( A  .x.  [ <. v ,  u >. ]  .~  )
)  =  ( ( A  .x.  B ) 
.+  ( A  .x.  C ) ) )
1613, 15eqeq12d 2054 . 2  |-  ( [
<. v ,  u >. ]  .~  =  C  -> 
( ( A  .x.  ( B  .+  [ <. v ,  u >. ]  .~  ) )  =  ( ( A  .x.  B
)  .+  ( A  .x.  [ <. v ,  u >. ]  .~  ) )  <-> 
( A  .x.  ( B  .+  C ) )  =  ( ( A 
.x.  B )  .+  ( A  .x.  C ) ) ) )
17 ecovdi.10 . . . 4  |-  H  =  K
18 ecovdi.11 . . . 4  |-  J  =  L
19 opeq12 3551 . . . . 5  |-  ( ( H  =  K  /\  J  =  L )  -> 
<. H ,  J >.  = 
<. K ,  L >. )
2019eceq1d 6142 . . . 4  |-  ( ( H  =  K  /\  J  =  L )  ->  [ <. H ,  J >. ]  .~  =  [ <. K ,  L >. ]  .~  )
2117, 18, 20mp2an 402 . . 3  |-  [ <. H ,  J >. ]  .~  =  [ <. K ,  L >. ]  .~
22 ecovdi.2 . . . . . . 7  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  )  =  [ <. M ,  N >. ]  .~  )
2322oveq2d 5528 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .x. 
[ <. M ,  N >. ]  .~  ) )
2423adantl 262 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  ( [ <. x ,  y >. ]  .~  .x. 
[ <. M ,  N >. ]  .~  ) )
25 ecovdi.7 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( M  e.  S  /\  N  e.  S
) )
26 ecovdi.3 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
2725, 26sylan2 270 . . . . 5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
2824, 27eqtrd 2072 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( (
z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [
<. v ,  u >. ]  .~  ) )  =  [ <. H ,  J >. ]  .~  )
29283impb 1100 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  [ <. H ,  J >. ]  .~  )
30 ecovdi.4 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  =  [ <. W ,  X >. ]  .~  )
31 ecovdi.5 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .x. 
[ <. v ,  u >. ]  .~  )  =  [ <. Y ,  Z >. ]  .~  )
3230, 31oveqan12d 5531 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( ( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y
>. ]  .~  .x.  [ <. v ,  u >. ]  .~  ) )  =  ( [ <. W ,  X >. ]  .~  .+  [ <. Y ,  Z >. ]  .~  ) )
33 ecovdi.8 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( W  e.  S  /\  X  e.  S
) )
34 ecovdi.9 . . . . . 6  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( Y  e.  S  /\  Z  e.  S
) )
35 ecovdi.6 . . . . . 6  |-  ( ( ( W  e.  S  /\  X  e.  S
)  /\  ( Y  e.  S  /\  Z  e.  S ) )  -> 
( [ <. W ,  X >. ]  .~  .+  [
<. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )
3633, 34, 35syl2an 273 . . . . 5  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( [ <. W ,  X >. ]  .~  .+  [
<. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )
3732, 36eqtrd 2072 . . . 4  |-  ( ( ( ( x  e.  S  /\  y  e.  S )  /\  (
z  e.  S  /\  w  e.  S )
)  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( v  e.  S  /\  u  e.  S
) ) )  -> 
( ( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y
>. ]  .~  .x.  [ <. v ,  u >. ]  .~  ) )  =  [ <. K ,  L >. ]  .~  )
38373impdi 1190 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( ( [ <. x ,  y
>. ]  .~  .x.  [ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y >. ]  .~  .x. 
[ <. v ,  u >. ]  .~  ) )  =  [ <. K ,  L >. ]  .~  )
3921, 29, 383eqtr4a 2098 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S )  /\  (
v  e.  S  /\  u  e.  S )
)  ->  ( [ <. x ,  y >. ]  .~  .x.  ( [ <. z ,  w >. ]  .~  .+  [ <. v ,  u >. ]  .~  ) )  =  ( ( [ <. x ,  y >. ]  .~  .x. 
[ <. z ,  w >. ]  .~  )  .+  ( [ <. x ,  y
>. ]  .~  .x.  [ <. v ,  u >. ]  .~  ) ) )
401, 6, 11, 16, 393ecoptocl 6195 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( A  .x.  ( B  .+  C ) )  =  ( ( A 
.x.  B )  .+  ( A  .x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378    X. cxp 4343  (class class class)co 5512   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fv 4910  df-ov 5515  df-ec 6108  df-qs 6112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator