ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecased Structured version   Unicode version

Theorem ecased 1238
Description: Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.)
Hypotheses
Ref Expression
ecased.1
ecased.2
Assertion
Ref Expression
ecased

Proof of Theorem ecased
StepHypRef Expression
1 ecased.1 . . 3
2 ecased.2 . . 3
31, 2jca 290 . 2
4 orel2 644 . . 3
54imp 115 . 2
63, 5syl 14 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  ecase23d  1239  preleq  4233  ordsuc  4241  sotri3  4666  addnqpr1lemil  6539  addnqpr1lemiu  6540  addcanprleml  6586  addcanprlemu  6587  ltletr  6864  apreap  7331  ltleap  7373  uzm1  8239  xrltletr  8453
  Copyright terms: Public domain W3C validator