ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc Structured version   Unicode version

Theorem dvelimc 2195
Description: Version of dvelim 1890 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1  F/_
dvelimc.2  F/_
dvelimc.3
Assertion
Ref Expression
dvelimc  F/_

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1352 . . 3  F/
2 nftru 1352 . . 3  F/
3 dvelimc.1 . . . 4  F/_
43a1i 9 . . 3  F/_
5 dvelimc.2 . . . 4  F/_
65a1i 9 . . 3  F/_
7 dvelimc.3 . . . 4
87a1i 9 . . 3
91, 2, 4, 6, 8dvelimdc 2194 . 2  F/_
109trud 1251 1  F/_
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1240   wceq 1242   wtru 1243   F/_wnfc 2162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-cleq 2030  df-clel 2033  df-nfc 2164
This theorem is referenced by:  nfcvf  2196
  Copyright terms: Public domain W3C validator