ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2 Unicode version

Theorem dom2 6255
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
Hypotheses
Ref Expression
dom2.1  |-  ( x  e.  A  ->  C  e.  B )
dom2.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
Assertion
Ref Expression
dom2  |-  ( B  e.  V  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)    V( x, y)

Proof of Theorem dom2
StepHypRef Expression
1 eqid 2040 . 2  |-  A  =  A
2 dom2.1 . . . 4  |-  ( x  e.  A  ->  C  e.  B )
32a1i 9 . . 3  |-  ( A  =  A  ->  (
x  e.  A  ->  C  e.  B )
)
4 dom2.2 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
54a1i 9 . . 3  |-  ( A  =  A  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( C  =  D  <->  x  =  y
) ) )
63, 5dom2d 6253 . 2  |-  ( A  =  A  ->  ( B  e.  V  ->  A  ~<_  B ) )
71, 6ax-mp 7 1  |-  ( B  e.  V  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   class class class wbr 3764    ~<_ cdom 6220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-dom 6223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator