Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnop Unicode version

Theorem dmsnop 4794
 Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
dmsnop.1
Assertion
Ref Expression
dmsnop

Proof of Theorem dmsnop
StepHypRef Expression
1 dmsnop.1 . 2
2 dmsnopg 4792 . 2
31, 2ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wceq 1243   wcel 1393  cvv 2557  csn 3375  cop 3378   cdm 4345 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-dm 4355 This theorem is referenced by:  dmtpop  4796  dmsnsnsng  4798  op1sta  4802  funtp  4952  ac6sfi  6352
 Copyright terms: Public domain W3C validator